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Abstract We make available to the community a new
dataset to support action recognition research. This dataset
is different from prior datasets in several key ways. It is
significantly larger. It contains streaming video with long
segments containing multiple action occurrences that often
overlap in space and/or time. All actions were filmed in the
same collection of backgrounds so that background gives
little clue as to action class. We had five humans to repli-
cate the annotation of temporal extent of action occurrences
labeled with their classes and measured a surprisingly low
level of intercoder agreement. Baseline experiments show
that recent state-of-the-art methods perform poorly on this
dataset. This suggests that this will be a challenging dataset
to foster advances in action recognition research. This manu-
script serves to describe the novel content and characteristics
of the LCA dataset, present the design decisions made when
filming the dataset, document the novel methods employed
to annotate the dataset, and present the results of our baseline
experiments.
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1 Introduction

There has been considerable research interest in action
recognition in video over the past two decades [1,2,4,5,7,
8,11,13–18,20,22,27–34,37,40–42,44,45,47,49,50,52–54,
57–59,61,62,64,67,68,71–79,81,83–85,87]. To support
such research, numerous video datasets have been gath-
ered. Liu et al.[39] summarize the available datasets as of
2011. These include KTH (6 classes, [58]), Weizmann (10
classes, [4]), CMU Soccer (7 classes, [9]), CMU Crowded
(5 classes, [27]), UCF Sports (9 classes, [53]), UR ADL
(10 classes, [44]), UM Gesture (14 classes, [38]), UCF
Youtube (11 classes, [41]), Hollywood-1 (8 classes, [35]),
Hollywood-2 (12 classes, [43]), MultiKTH (6 classes, [70]),
MSR (3 classes, [86]), and TRECVID (10 classes, [63]).
These datasets contain short clips, each depicting one of a
small number of classes (3–14). Several more recent datasets
also contain short clips, each depicting a single action, but
with a larger number of action classes: UCF50 (50 classes,
[52]), HMDB51 (51 classes, [33]), andUCF101 (101 classes,
[65]). The VIRAT dataset [48] has 12 classes and longer
streaming video.

Here, we introduce a new dataset called the large contin-
uous action dataset (LCA). This dataset contains depictions
of 24 action classes. The video for this dataset was filmed
and annotated as part of the DARPA Mind’s Eye program.
A novel characteristic of this dataset is that rather than
consisting of short clips each of which depicts a single
action class, this dataset contains much longer stream-
ing video segments that each contain numerous instances
of a variety of action classes that often overlap in time
and may occur in different portions of the field of view.
The annotation that accompanies this dataset delineates
not only which actions occur but also their temporal
extent.
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Many of the prior datasets were culled from video down-
loaded from the Internet. In contrast, the LCA dataset
contains video that was filmed specifically to construct the
dataset. While the video was filmed with people hired to act
out the specified actions according to a general script, the fact
that the video contains long streaming segments tends to mit-
igate any artificial aspects of the video and render the action
depictions to be quite natural. Moreover, the fact that all of
the video was filmed in a relatively small number of distinct
backgrounds makes the dataset challenging; the background
gives little clue as to the action class.

A further distinguishing characteristic of the LCA dataset
is the degree of ambiguity. Most prior action recognition
datasets, in fact most prior datasets for all computer vision
tasks, make a tacit assumption that the labeling is unam-
biguous, and thus, there is a ‘ground truth.’ We had a team
of five human annotators each annotate the entire LCA
dataset. This allowed us to measure the degree of intercoder
agreement. Surprisingly, there is a significant level of dis-
agreement between humans as to the temporal extent of most
action instances.We believe that such inherent ambiguity is a
more accurate reflection of the underlying action recognition
task and hope that the multiplicity of divergent annota-
tions will help spur novel research with this more realistic
dataset.

Another distinguishing characteristic of the LCA dataset
is that some action occurrences were filmed simultaneously
with multiple cameras with partially overlapping fields of
view. While the cameras were neither spatially calibrated
nor temporally synchronized, the fact that we have multi-
ple annotations of the temporal extent of action occurrences
may support future efforts to perform temporal synchroniza-
tion after the fact. Furthermore, while most of the video was
filmed fromground-level cameraswith horizontal view, some
of the video was filmed with aerial cameras with bird’s eye
view. Some of this video was filmed simultaneously with
ground cameras. This may support future efforts to conduct
scene reconstruction.

Some datasets are provided with official tasks and eval-
uation metrics. We refrain from doing so for this dataset.
Instead, we leave it up to the community to make use of
this dataset in a creative fashion for as many different tasks
as it will be suited. Nonetheless, the LCA dataset contains
sufficient information for users to compare theirmethods pre-
cisely with the results of the baseline experiments reported
here.

2 Collection

The video for this dataset was filmed by DARPA in con-
junction with Mitre and several performers from the Mind’s

Table 1 Verbs used as labels in the LCA dataset

Approach∗ Drop∗ Give∗ Replace∗

Arrive Enter∗ Hold Run

Bury∗ Exchange∗ Leave Stop

Carry∗ Exit∗ Pass∗ Take∗

Chase∗ Flee∗ Pick up∗ Turn

Dig∗ Follow∗ Put down∗ Walk

The starred verbs were used as part of the stage directions to the actors.
The remaining verbs were not used as part of the stage directions, but
occurred incidentally

Eye program.1 See appendix included in the electronic sup-
plementary material for a precise explanation of the origin of
the video used in the LCAdataset and the distinction between
it and that used as part of the Mind’s Eye program.

The LCA dataset was filmed at several different loca-
tions, all of which were either military training facilities or
facilities used to film Hollywood movies. The videos were
filmed in a variety of backgrounds: several simulated country
roads, several simulated safe houses, and several simulated
middle-eastern urban environments. This manuscript reports
a systematic annotation effort for this video which comprises
190 files as delineated in Table 1 in the appendix included in
the electronic supplementary material.

The LCA dataset constitutes 2,302,144 frames and a total
of 12-h, 51-min, and 16-s of video. For comparison, UCF50
has 1,330,936 frames and 13.81 h, HMDB51 has 632,635
frames and5.85h,UCF101has 27h,Hollywood-2has 20.1 h,
and VIRAT has 8.5h. Several frames from this dataset illus-
trating several of the backgrounds are shown in Fig. 1.

3 Annotation

The LCA dataset contains annotations for 24 verbs, as delin-
eated in Table 1. Figure 2 contains sample frame pairs for
each of the 24 verbs. Of these, 17 verbs were used as part of
the stage directions given to the actors to guide the actions
that they performed. The remainder were not used as part of
the stage directions but occurred incidentally. Nothing, how-
ever, precluded the actors from performing actions that could
be described by other verbs. Thus, the video depicts many
other actions than those annotated, including but not lim-
ited to riding bicycles, pushing carts, singing, pointing guns,
arguing, and kicking balls. The only restriction, in principle,
to these 24 verbs is that these were the only actions that were
annotated. Identifying the presence of specific verbs in the
context of many such confounding actions should present
additional challenges.

1 http://www.visint.org/.
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Fig. 1 Several frames from the LCA dataset illustrating several of the backgrounds in which they were filmed

Fig. 2 Sample frame pairs from the LCA dataset illustrating the 24 action classes

We annotated all occurrences of the 24 verbs from Table 1
in the videos in Table 1 in the appendix included in the
electronic supplementary material. Each such occurrence
consists of a temporal interval labeled with a verb. The judg-
ment of whether an action described by a particular verb
occurred is subjective; different annotators will arrive at dif-

ferent judgments as to occurrence as well as the temporal
extent thereof. To help guide annotators, we gave them the
specification of the intended meaning of each of the 24
verbs as provided by DARPA. Annotators performed the
annotation at workstations with dual monitors. One mon-
itor displayed the annotation tool while the other monitor
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displayed the documentation of intended verb meaning. The
documentation of intended verb meaning is included in the
LCA distribution in the electronic supplementary material.

We also asked annotators to annotate intervals where cer-
tain object classes were present in the field of view. These
include bandannas, bicycles, people, vehicles, and weapons
(the bandannas were worn by people around their head or
arms). For these, a count of the number of instances of each
class that were visible in the field of view was maintained.
It was incremented each time a new instance became visi-
ble and decremented each time an instance became invisible.
We instructed annotators that there was no need to be precise
when an instance was partially visible. We further instructed
annotators that vehicles denoted motor vehicles, not push
carts, and weapons denoted guns, not other things like clubs
or rocks that could be used as weapons.

We provided annotators with a tool that allowed them to
view the videos at ordinary frame rate, stop and start the
videos at will, navigate to arbitrary points in the videos,
view individual frames of the videos, add, delete, and move
starting and ending points of intervals, and label intervals
with verbs. The tool also contained buttons to increment
and decrement the counts for each of the object classes
and appraised the annotator with the running counts for the
object classes in each frame as the video was played or
navigated.

Because of the large quantity of video to be annotated,
and the fact that nothing happens during large portions of
the video, we preprocessed the video to reduce the amount
requiringmanual annotation.Wefirst downsampled thevideo
to 5 fps just for the purpose of annotation; the annotation
was converted back at the end to the original frame rate.
Then, segments of this downsampled video where no motion
occurred were removed. To do this, we computed dense opti-
cal flow on each pixel of each frame of the downsampled
video. We then computed the average of the magnitude of
the flow vectors in each frame and determined which frames
were above a threshold. Stretches of contiguous frames that
were above threshold that were separated by short stretches
of contiguous frame that were below threshold were merged
into single temporal segments. Then, such single temporal
segments that were shorter than a specified temporal length
were discarded.2 Annotators were only given the remaining
temporal segments to annotate.We performed a postprocess-
ing step whereby the authors manually viewed all discarded
frames tomake sure that no actions started, ended, or spanned
the omitted temporal segments.As part of this postprocessing
step, the authors manually checked that none of the specified

2 The threshold for average optical flowmagnitudewas 150.The thresh-
old for ignoring short below-threshold spans when merging contiguous
above-threshold frames into temporal segments was 50 frames. The
threshold for ignoring short temporal segments was 15 frames.

object classes entered or left the field of view during the
omitted temporal segments.

We had five annotators each independently annotate the
entire LCA dataset. Annotators were given initial instruc-
tions. During the annotation, annotators were encouraged
to discuss their annotation judgments with the authors. The
authors would then arbitrate the judgment, often specifying
principles to guide the annotation. These principles were
then circulated among the other annotators. The annotator
instructions and principles developed through arbitration are
included in the LCA distribution.

We performed a consistency check during the annotation
process. Whenever an annotator completed annotation of a
temporal segment, if that annotator did not annotate any inter-
vals during that segment but other annotators did, we asked
that annotator to review their annotation.

The LCA dataset contains five verb-annotation files for
each of the video files in Table 1 in the appendix included
in the electronic supplementary material. These have the
same name as their corresponding video, but with the exten-
sion txt, and are located in directories named with each
of the annotator codes bmedikon, cbushman, kim861,
nielder, and nzabikh. Each line in each of these files
contains a single temporal interval as a text string specifying
a verb and two zero-origin nonnegative integers specifying
the starting and ending frames of the interval inclusive. The
LCA dataset also contains five object class annotation files
for each of the video files in Table 1 in appendix included in
the electronic supplementary material. These also share the
filename with the corresponding video, but with the addi-
tion of the suffix -enter-exits.txt, and are located in
the same directories named with each of the above annotator
codes. Each line in each of these files contains a text string
specifying an object class, an integer specifying the num-
ber of objects of that class entering or exiting the field of
view (positive for entering and negative for exiting), and a
single zero-origin nonnegative integer specifying the video
frame.

4 Analysis

We analyzed the degree of agreement between the different
annotators. To do this, we compared pairs of annotators, tak-
ing the judgments of one as ‘ground truth’ and computing
the F1 score of the other. An interval in the annotation being
scored was taken as a true positive if it overlapped some
interval with the same label in the ‘ground truth.’ An interval
in the annotation being scored was taken as a false positive
if it did not overlap any interval with the same label in the
‘ground truth.’ An interval in the ‘ground truth’ was taken as
a false negative if it did not overlap any interval with the same
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Fig. 3 Intercoder agreement on
the annotations of the LCA
dataset. F1 score for each pair of
annotators as the overlap
criterion is varied. Overlap of
two intervals is measured as the
length of their intersection
divided by the length of their
union

label in the annotation being scored. From these counts, an
F1 score could be computed.

We employed the following overlap criterion. For a pair
of intervals, we computed a one-dimensional variant of the
‘intersection over union’ criterion employed within the Pas-
cal VOC challenge to determine overlap of two axis-aligned
rectangles [10], namely the length of the intersection divided
by the length of the union. We considered two intervals to
overlap when the above exceeded some specified thresh-
old. We then computed the F1 score as this threshold was
varied and plotted the results for all pairs of annotators
(Fig. 3).

Note that there is a surprisingly low level of agreement
between annotators. Annotators rarely if ever agree on the
precise temporal extent of an action as indicated by the fact
that all agreement curves go to zero as the overlap thresh-
old goes to one. At an overlap threshold of 0.5, the F1
score varies between about 0.3 and about 0.6. At an over-
lap threshold of 0.1, the threshold employed by VIRAT to
score machines against humans, the F1 score varies between
about 0.38 and about 0.67. This would put an upper bound
on machine performance with this dataset using the VIRAT
threshold. Even if the overlap threshold is reduced to zero,
the F1 score varies between about 0.43 and about 0.7. This
indicates that this dataset should be challenging for computer
action recognition.

5 Baseline experiments

We performed two experiments to present and compare the
performance of several state-of-the-art action recognition
systems on the LCA dataset. The first experiment evalu-
ated performance of several baseline methods on trimmed
videos extracted from the LCA dataset. This task involved
training and testing a classifier on a 1-out-of-24 forced-
choice classification task, where each trimmed video clip
nominally depicted a single action occurrence. The second
experiment evaluated performance of several baseline meth-
ods on untrimmed streaming videos that comprise the entire
LCA dataset. For this task, the entire LCA dataset was par-
titioned into five sets of videos to perform leave-one-set-out
cross-validation. Models were trained on the videos in four
sets and then applied to the videos in the fifth set. The task
was to produce temporal intervals that delineatedoccurrences
of the 24 action classes, each such interval labeled with the
class of the action that occurred.We describe the two baseline
experiments below.

The baseline experiments were performed on a collection
of methods that attempt to approximate recent state-of-the-
art methods for action recognition. These include running the
actual released code for C2 [24], Action Bank [57], Stacked
ISA [36], and VHTK [44]. We also obtained the code for
Cao’s method [6], Cao’s reimplementation [6] of Ryoo’s
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method [56], and Retinotopic [3] from the authors. We also
employ a number of other recent methods, including Dense
Trajectories [72,73], Improved Trajectories [74], C3D [69],
and the methods of Simonyan and Zisserman [60], Ng et al.
[46], and Xu et al. [80].

The authors of Dense Trajectories [72,73] make their
feature extractor available, but not their full pipeline [73].
Similarly, the authors of Improved Trajectories [74] also
make their feature extractor available, but not their full
pipeline. We reimplemented one version of a pipeline based
on the original Dense Trajectories and two versions of
a pipeline based on the Improved Trajectories, one that
employs an SVM classifier and one that employs a neural
network classifier.

This latter method, Improved Trajectories+NN, was
implemented as follows. We compute Improved Trajecto-
ries for a video and then use PCA to reduce the number of
dimensions of the Traj, HoG, HoF, MBHx, and MBHy fea-
tures to 20, 48, 54, 48, and 48, respectively. We then train
Fisher vectors [51] with a Gaussian mixture model with 32
components for each of the five features. Finally, the five
Fisher vectors are concatenated to form a fixed-length fea-
ture vector of 6976 dimensions for each video. To classify
these feature vectors, we construct a four-layer feed-forward
neural network (4-mlp), whose structure will be described
below.

We constructed a classifier based onC3D [69] by using the
published pretrained models with a neural network classifier.
We compute the C3D fc6 features using the model trained on
the Sports-1Mdataset [26]. Afixed-length 4096-dimensional
feature vector is computed for every temporal interval of 16
frames in a video sample. Thus, a video sample of length T
will have a sequence of � T

16� feature vectors. All such feature
vectors produced on a video sample are averaged to obtain a
single feature vector for that sample. These are also classified
with a 4-mlp network.

We have three additional baseline methods. The first,
VGG(RGB)+PCA+VLAD, attempts to simulate Xu et al.
[80]. The second, VGG(RGB)+LSTM, attempts to simulate
Ng et al. [46]. Finally, both Simonyan and Zisserman [60]
and Ng et al. [46] employ two data streams, one modeling
image appearance features and onemodelingmotion through
optical flow features. We simulate the latter data stream with
a third baseline method, VGG(Flow)+LSTM.

The VGG(RGB)+PCA+VLAD method pools video
descriptors produced by a convolutional neural network
(CNN). We compute the VGG-16 fc7-relu features using
the model pretrained on the ImageNet dataset [55]. A fixed-
length 4096-dimensional feature vector is computed for
everyRGBvideo frame, afterwhich the dimension is reduced
to 128 with principle component analysis (PCA).We employ
the vector of linearly aggregated descriptors (VLAD)method
[23] with 32 K-means centers to pool the sequence of 128-

dimensional feature vectors into a single 4096-dimensional
feature vector per video. Again, these are also classified with
a 4-mlp network.

The VGG(RGB)+LSTM method computes a sequence
of VGG-16 fc7-relu feature vectors for a video, one per
RGB frame. This sequence is then classified with a five-
layer neural network (5-lstm) built around a Long Short-term
Memory (LSTM) layer [19].

The VGG(Flow) + LSTM method is similar to the VGG
(RGB) + LSTM method except that the VGG features are
computed on dense optical flow fields [12], sampled at frame
rate, instead of RGB frames. The same VGG model, pre-
trained on the ImageNet dataset, is applied to the flow fields.
The same sequence classifier, 5-lstm, is used for classifying
the resulting feature vector sequence. But this classifier is
retrained on the different features produced.

The 4-mlp classifiers used by Improved Trajectories +
NN, C3D, and VGG(RGB) + PCA + VLAD employ the
same structure. An α-dimensional input feature vector is
processed by an input layer with α nodes, a first hidden layer
with α

2 nodes, and a second hidden layer with α
4 nodes to pro-

duce an output layer with β nodes, where β is the number of
classes. Similarly, the 5-lstm classifiers used by VGG(RGB)
+ LSTM and VGG(Flow) + LSTM also employ the same
structure. Anα-dimensional input feature vector is processed
by an input layer with α nodes, a first hidden layer with α

16
nodes, an LSTM layer with α

16 nodes, and a second hid-
den layer with 256 nodes, to produce an output layer with β

nodes, where β is the number of classes. The last instance of
the output sequence of the LSTM layer is fed into the second
hidden layer. All other layers are fully connected linear units.
The 4-mlp and 5-lstm networks both employ a dropout layer
[66] with a drop rate 0.3 before the input layer and a softmax
layer after the output layer to compute the class probability.
All networks employ hyperbolic tangent (tanh) as the acti-
vation function. Distinct instances of the associated network
topology are trained for the different methods using stochas-
tic gradient descent (SGD) with batch size between 10 and
20, and a learning rate between 10−3 and 10−2.

5.1 Baseline experiment on trimmed videos

The dataset of trimmed videos was constructed from the
full LCA dataset as follows. First, we took the human-
annotated action intervals produced by one of the annotators,
cbushman. This annotator was chosen to maximize the
number of available action intervals.Next, amaximumof 100
intervals were selected for each action class. For those action
classes for which more than 100 intervals were annotated, a
random subset of 100 intervals was selected. For those action
classes with 100 or fewer annotated intervals, all annotated
intervalswere used.A2-s clipwas extracted from the original
videos centered in time on the middle of each selected anno-
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Table 2 Comparison of accuracy for state-of-the-art action recognition
systems on a subset of the LCA dataset with trimmed videos

Method Accuracy (%)

Improved Trajectories+NN 18.148

VGG(Flow)+LSTM 16.666

Action Bank [57] 16.666

Improved trajectories+SVM [74] 15.556

Retinotopic [3] 14.444

Dense Trajectories [72,73] 14.074

VGG(RGB)+PCA+VLAD 10.370

C3D [69] 9.629

C2 [24] 9.259

VGG(RGB)+LSTM 8.888

Cao [6] 7.592

Cao’s [6] implementation of Ryoo [56] 6.666

Stacked ISA [36] 6.666

VHTK [44] 6.296

Blind baseline (30/540) 5.555

tation interval. These clips were temporally downsampled to
20 fps and spatially downsampled to a width of 320 pixels,
maintaining the aspect ratio. This process resulted in a total
of 1858 clips used for the baseline experiment on trimmed
videos.

The class label of each clip was considered to be the action
class corresponding to the human-annotated interval from
which the clip was derived. The clips for each class were
randomly split into a training set with 70% of the clips and a
test set with 30% of the clips, under the constraint that sets of
clips extracted from the same video should fall completely
into either the training or test set. This was done to avoid
having clips from the same action (e.g., two clips from the
same person digging in the same location) from appearing in
both the training and test sets. This resulted in a training set
of 1318 training clips and 540 test clips. Each method was
trained on the training set and used to produce labels on the
test set. All methods were run with default or recommended
parameters. These labelswere compared to the intended class
labels to measure the accuracy of each method. The results
of this experiment are summarized in Table 2.

There are several things of note in these results. First, all
the accuracies are quite low, indicating the difficulty of the
LCAdataset. The highest performingmethod, ImprovedTra-
jectories+NN, is correct only 18.148%of the time. The four
lowest performing methods have accuracies approaching
the performance of the blind baseline (5.555%). Addition-
ally, many newer methods do not necessarily outperform
the older methods. We suspect that this difference in rela-
tive performance of newer and older methods compared to
other datasets is the result of the lack of correlation between

background and action class which is often present in other
datasets, as well as the presence of multiple people in the
field of view. That the performance is so low and that the
highest scoring methods on other datasets are not necessar-
ily the same here shows that this dataset presents new and
difficult challenges not present in other datasets.

5.2 Baseline experiment on untrimmed streaming videos

For this experiment, we employed fivefold leave-one-set-of-
videos-out cross-validation. For each fold, binary classifiers
using each method were trained for each action class to per-
form a presence/absence distinction for activity of that class.
These were trained with a collection of short 2-s samples
of each action class. Each presence/absence classifier was
trained in a discriminative fashion with all samples from the
target class in the training set as positive samples and all sam-
ples from all the other classes in the training set as negative
samples. The collection of short 2-s samples of each action
class was constrained to have a maximum of 100 samples
for each action class. These were cropped from the stream-
ing training videos using the temporal annotations obtained
from one of the annotators, cbushman. For those action
classes for which the training set contained fewer than 100
instances, all instances were used. For those action classes
for which the training set contained more than 100 instances,
100 instances were chosen randomly.

These binary presence/absence classifiers were used to
produce labeled intervals for event occurrences in the test
sets as follows. Each streaming test video was divided into
a sequence of 2-s clips, each overlapping the previous by
1s. The trained binary presence/absence classifiers were
used to generate confidence scores for each action class on
each clip by removing the final quantization. This yields a
sequence of confidence scores for each action class over time
on the streaming test video. This sequence of scores was
smoothed with an FIR filter by convolving with a finite sig-
nal: [0.1, 0.2.0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0.1]. Nonmaximum
suppression was then performed on each smoothed score
sequence to generate intervals for each peak in the smoothed
score sequence. Each interval was given the score cor-
responding to the peak that produced that interval. The
temporal extent of each interval was found by progres-
sively extending the temporal interval forward and backward
around the peak in 1-s increments until a local minimum in
smoothed sequence score. Finally, for each action class, the
top 50% of such intervals were selected based on their con-
fidence score.

Each method produced a set of labeled intervals for the
test set in each cross-validation fold. Since the test sets for the
cross-validation folds constitute a disjoint cover of the entire
dataset, these were all pooled to yield a single set of intervals
produced by each method for the entire dataset. Such a set
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Fig. 4 Machine–human intercoder agreement on the LCA dataset. F1 score for each pair of machine methods and human annotators as the overlap
criterion is varied. Overlap of two intervals is measured as the length of their intersection divided by the length of their union

of intervals produced by a method is conceptually similar to
a set of intervals produced by a human annotator, since each
human annotator also annotated the entire dataset. Thus, we
computed machine–human intercoder agreement on sets of
intervals covering the entire LCA dataset comparing each
method to each human annotator using the same method for
computing human–human intercoder agreement described in
Sect. 4. Just as Fig. 3 characterized human–human intercoder
agreement by plotting F1 score for a pair of human annota-
tors as a function of the overlap threshold, Fig. 4 characterizes
machine–human intercoder agreement by plotting F1 score
between a pair of a machine method and a human annotator
as a function of overlap threshold. This is done for all pairs of
machine methods and human annotators. To allow compari-
son between machine–human and human–human intercoder
agreement, Fig. 5 overlays the results ofmachine–human and
human–human intercoder agreement. To increase legibility,
machine–human and human–human intercoder agreement
is shown only for pairs that include cbushman. Note that
machine–human intercoder agreement is considerably lower
than human–human intercoder agreement. The gap between
machine–human and human–human intercoder agreement
suggests that the LCA dataset is challenging and can serve
as fodder for new action recognition research.

We similarly compared bothmachine–human and human–
human intercoder agreement using the evaluation metric
from THUMOS [25]. For each action class and every pair of

interval annotations for the entire LCA dataset that included
the human annotation produced by cbushman, we com-
puted the average precision (AP) on the ranked set of intervals
produced using five distinct overlap thresholds: 0.1, 0.2,
0.3, 0.4, and 0.5. For human annotators, we randomized the
rank order as humans did not annotate intervals with con-
fidence scores. For each overlap threshold and each pair of
machine and/or human annotators, a mean average preci-
sion (mAP) was computed as an unweighted average over
all action classes. Figure 6 shows the machine–human and
human–human intercoder agreement using the evaluation
metric from THUMOS for each overlap threshold. Again
note that machine–human intercoder agreement is consid-
erably lower than human–human intercoder agreement. The
gap between machine–human and human–human intercoder
agreement computed using the THUMOS evaluation crite-
rion further supports the hypothesis that the LCA dataset is
challenging and can serve as fodder for new action recogni-
tion research.

6 Related work

The THUMOSChallenge [25] also evaluates action recogni-
tion onuntrimmedvideos. The dataset used for theTHUMOS
Challenge differs from the LCA dataset in several ways.
First, the THUMOS Challenge uses trimmed videos from
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Fig. 5 Comparison between machine–human and human–human
intercoder agreement on the LCA dataset, comparing against a single
human annotator: cbushman. F1 score for each pair of annotators as

the overlap criterion is varied. Overlap of two intervals is measured as
the length of their intersection divided by the length of their union

Fig. 6 Comparison between machine–human and human–human intercoder agreement on the LCA dataset, using the evaluation metric from the
THUMOS Challenge [25], comparing against a single human annotator: cbushman
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UCF101 [65] as the training set; only the validation and test
sets involve untrimmed videos. The LCA dataset is parti-
tioned into five sets of videos for training and test; each set of
videos consists of untrimmed videos. Second, the validation
and test sets for the THUMOS Challenge are ‘untrimmed’
but not ‘streaming.’ The videos in the LCA dataset are not
just ‘untrimmed’ but also ‘streaming.’ That is, the videos in
the LCA dataset are all very long, much longer than those in
the THUMOS Challenge validation and test sets. Each video
in the LCA dataset typically includes numerous occurrences
of many different kinds of actions at different points in time
and different positions in the field of view. Multiple action
occurrences, of different action types, often overlap in space
and/or time. Part of the intent of theLCAdataset is to evaluate
the ability of methods to handle such. Third, the set of action
classes used in the THUMOS Challenge are different from
those used in theLCAdataset. TheTHUMOSChallenge uses
a subset of 20 out of the 101 action classes from UCF101, all
of which are sporting activities. Many of these are described
by nouns rather than verbs. In contrast, the LCA dataset con-
tains annotations for 24 action classes and five object classes.
The action classes are all verbs that describe everyday activ-
ities. The action classes of the THUMOS Challenge and the
LCA dataset are disjoint and cover fundamentally different
kinds of activity. Fourth, the action classes in the THUMOS
Challenge are often correlated with the background, Diving
typically happens in swimming pools and BasketballDunk
typically happens in basketball courts. The background can
help distinguish activity class. In contrast, there is little to
no correlation between action class and background in the
LCA dataset. This forces activity recognition to rely solely
on the motion characteristics of the action being performed.
Thus, the THUMOS Challenge and the LCA dataset sup-
port two different kinds of research into activity recognition:
methods that utilize background as part of activity recogni-
tion and methods that do not. Fifth, the THUMOS Challenge
comes with a single annotation for the validation and test
sets. As such, there is no way of knowing whether or not
there is human agreement as to the annotation. In contrast,
the LCA dataset was annotated by five different indepen-
dent annotators. As such, this models the inherent ambiguity
present in many natural activities. This can serve to facil-
itate future computer vision research that is aware of and
can model such ambiguity. Finally, the action classes in the
THUMOS Challenge are themselves largely unambiguous.
For example, any given action occurrence is unlikely to be
both PoleVault and Shotput. In contrast, the action classes in
the LCA dataset overlap semantically. For example, a given
action occurrence might legitimately be both an approach
and a walk. That is the nature of verbs in natural language;
they describe overlapping semantic classes. Moreover, there
may be natural inferential structure between such semantic
overlap. This inferential structure may be bidirectional. For

example, it may be the case that whenever there is chase there
is also flee and vice versa. The fact that chase and flee cooc-
cur does not imply that they have the same meaning; their
meaning differs in the thematic relationship between the par-
ticipants. The LCA dataset can facilitate future research that
studies such [82]. This inferential structuremay also be unidi-
rectional. For example, it may be the case that whenever there
is carry there is alsowalk or run but not vice versa. The LCA
dataset can facilitate future research that attempts to learn the
inferential structure of language from visual data [21].

7 Conclusion

We make available to the community a new dataset to sup-
port action recognition research.3 This dataset has more
hours of video than HMDB51, roughly the same amount
of video as UCF50, about half as much video as UCF101
and Hollywood-2, but unlike these has streaming video and
has about twice as much video and twice as many classes as
VIRAT, the largest dataset of streaming video. A distinguish-
ing characteristic of this dataset is that the video is streaming;
long video segments contain many actions that start and stop
at arbitrary times, often overlapping in space and/or time. A
further distinguishing characteristic is that while all actions
were filmed in a variety of backgrounds, every action occurs
in every background so that background gives little infor-
mation as to action class. The above characteristics suggest
that this will be a challenging dataset. This is confirmed by
the low performance of recent methods on baseline exper-
iments which also show that those methods which perform
best on other datasets do not necessarily outperform other
methods on this dataset. The new difficulties posed by this
dataset should spur significant advances in action recognition
research.
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