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Abstract

Visually grounded semantics is a very important aspect in word representation,
largely due to its potential to improve many NLP tasks such as information re-
trieval, text classification and analysis. We present a new distributed word learn-
ing framework which 1) learns word embeddings that better capture the visually
grounded semantics by unifying local document context and global visual context,
2) jointly learns word representation, image representation and language models
and 3) focus on better word similarity rather than relatedness. We apply a data
set that contains 1 million image-sentence pairs for training and the evaluation
on word similarity demonstrates our model outperforms linguistic model without
global visual context.

1 Introduction

Distributed word representations [1, 2] have shown to be very effective and efficient to capture
syntactic and semantic word relationships, and have been used in many NLP tasks such as sentiment
analysis and computer vision tasks such as video to text [3]. But as Huang et al. [4] noted, most
continuous word representation models are built with only local context. There are some works
that incorporate global text or paragraph with local window to train word vector [4, S]] and achieved
better performance in word relationships, text classification and sentiment analysis tasks. Although
global word context can provide useful topical information, the learned representations still capture
more relatedness or association between words rather than similarity. For example, with a skip-
gram model [2f] trained with 100 billion words, the cosine similarity between “cat” and “dog” is
0.76 while between “cat” and “tabby cat” is 0.63.

In this work, we propose to use global visual context to help learn better word representations that
embed visually grounded semantics. Some researchers have explored multi-modality between vi-
sion and language, Frome et al. [6] learn similarity metric between output of a deep visual model
and a distributional language model. Socher et al. [7] build a multi-modal representation between
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Figure 1: Framework of our model, left part is language model with input from sliding windows of word
sequence; right part is our global visual context model with input from image.

compositional sentence vectors and image vector representation. More recently, Kiela and Bottou
[8]] construct multi-modal concept representations by concatenating a skip-gram linguistic represen-
tation vector with a deep visual representation vector. All of these methods explore the role of visual
information in multi-modal transformation, sentence compositionality or extra information for bet-
ter word semantics, but neither the word representation nor language model would be influenced by
visual information.

WIth our framework, the word representation, the language model and the visual representation are
learned together, where visual information can be used as a global context to improve the word
semantics. In this way, we are able to measure how global visual information contributes (or affects)
word representation. Further in the paper, we show that our approach will improve word semantics.

2 Algorithms

To train our model, we use image-sentence pair as our training data, where each image corresponds
to a number of sentence descriptions. As Fig. [I]illustrates, our framework is composed of two
parts, the language model on the left is inspired by Continuous Bag-of-Words model [1} 5], where
each word in the vocabulary is initialized as random vector with fixed length. Right side of the
figure shows our global visual context, we initialize the global visual vector with convolutional
neural networks [9] output from the corresponding image. We average the word vectors from a
local window of training sentences to construct the local text vector, and directly use CNN feature
as our global visual vector, both of them will contribute to the classification of next word. Then,
classification error will be back propagated to both local text vector, global visual vector and the
model.

More formally, given the training text we can obtain a vocabulary and construct a vocabulary matrix
W e R™*4 where m is vocabulary size and d is dimension of word vector. For images, we extract
CNN feature vectors V € R™"*! as global visual context, where n is total number of images and
l is dimension of image vector. For a sequence of training words w, ws, ws, ..., wr, the objective
function is to maximize the average log probability:
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where T is training words size, 2k + 1 is local text window size, vt(a) is visual representation of
image a that corresponds to w;. The probability can be formulated by softmax:

(@) exp(Yuw, )
p(wt Wi—fyeeey Wik, U, ) =
| ! > exp(yi)

2



Table 1: WordSim Spearman correlation between linguistic baseline and our model with global visual context.
Results with different window sizes and two training methods are reported.

Window/Method|Linguistic (NS)|Global Visual Context (NS)|Linguistic (HS)|Global Visual Context (HS)
8 0.338 0.362 0.324 0.330
10 0.331 0.344 0.386 0.377
12 0.314 0.353 0.293 0.336
y = Mih(ws g, .., Wik, ve; W, V)
= My([ave(wi—p, .., wesr), avy”) 3)

M € R™*(d+D) g softmax parameter matrix and M, is the vector corresponds to word w;, and h
is a function that combine local words representation and global image representation, ¥ is predic-
tion of softmax. In our implementation, we average the word vectors and then concatenate with
image vector with tuning parameter «.. Similar as [1} 2], we use Hierarchical Softmax and Negative
Sampling to speedup the training. Both word vectors and image vectors are trained with stochastic
gradient descent and back propagation.

3 Experiments

Our experiments focus on measuring word semantic similarity, especially the relationship between
word representation and its visually grounded meaning.

Dataset Our corpus and corresponding images are from SBU Captioned Photo Dataset [[10]], where
1 million well captioned pictures are collected from Flicker. In practical, we totally collected 929499
images because some of photos are not available from Flicker, each image is described by one
sentence. The whole corpus contains 13.4 million words and thus we build a vocabulary of 298469
words.

Implementation Details To train the model, we initialize each word in the vocabulary as 100-
dimensional random vector. The image vectors are initialized by computing convolutional neural
networks [9], we choose the 7th layer output after ReLU and get the 4096-dimensional vector. In
training, we test both hierarchical softmax and negative sampling to speed up, and also test different
window sizes, word vector sizes and global visual contribution factor a.

Evaluate Semantics Similarity We use WordSim353 Similarity test set [11] and SimLex-999 [12]
to measure the words semantics similarity.

For WordSim 353 data set, our vocabulary covers 95% of the annotated ground truth so we only
evaluate on the 192 concept pairs. We evaluate the Spearman correlation between system output,
i.e., cosine similarity between a pair of words, and human rated ground truth.

Table. [I] shows the Spearman correlation score of linguistic baseline and our model with global
visual context, three different word window sizes and 2 different training methods are compared.
The scores confirm significant improvement with the help of visual context. We also tested different
visual contribution parameter « and find it generally performs well with value close to 0.1.

To evaluate whether higher scores really capture better visually grounded semantics, we compare
the cosine similarity between linguistic model and our model, and find top 5 word pairs when our
similarity scores are higher than linguistic model, and top 5 pairs that are lower. Table. [2] reports
results from two methods (NS in first 4 columns and HS in last 4 columns), it is clear that our word
vector trained with images capture better semantics. For example, the similarity is higher when
dealing word pairs with strong visual information, such as “planet”-“star” and “vodka”-“gin”; on
the contrary, we also find word vectors with global visual context tend to return lower similarity
when the word pair has more abstract relationship but limited visually grounded meaning, such as
“psychology”-“discipline” and “morality”-“marriage”, or the word pair captures more relatedness
rather than similarity such as “cell”’-“phone”. In summary, the qualitative results are consistent with
correlation scores and indicate the effectiveness of our method.



Table 2: Visually grouned semantics comparison between linguistic model and our model. We select top 5
best and top 5 worst scoring pairs of our global visual context model with respect to the linguistic model.

Negative Sampling Hierarchical Softmax

word1 word?2 GT | Acossim wordl word2 GT | Acossim
car automobile 8.94 0.085 vodka gin 8.46 0.166
planet star 8.45 0.074 money dollar 8.42 0.137
hospital infrastructure | 4.63 0.072 media trading | 3.88 0.128
jaguar cat 7.42 0.061 cup artifact | 2.92 0.117
dollar buck 9.22 0.058 gem jewel 8.96 0.108
psychology discipline 5.58 -0.165 cell phone 7.81 -0.289
consumer confidence 4.13 -0.160 focus life 4.06 -0.207
president medal 3 -0.156 morality | marriage | 3.69 -0.153
physics chemistry 7.35 -0.128 man women 8.3 -0.151
magician wizard 9.02 -0.105 tiger animal 7 -0.142
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Figure 2: Figure of SimLex-999 Data set

Furthermore, we evaluate our model in a larger data set SimLex-999 [12] where 999 pairs of words
are selected and rated, this data set focuses on word similarity, besides, POS tagging of words and
“concreteness” of words are also annotated. Each word pair is labeled with adjective, noun and verb;
and also with concreteness scores ranging from 1 to 4. Fig. [2|(a) shows Spearman correlation score
of our method with Negtive Sampling over different word vector dimensions, the scores are reported
for 970 SimLex words in our vocabulary, only noun word pairs (666 pairs), all word pairs that has
concreteness larger than 1,2 and 3. The results show that our model performs better with noun, and
with word pairs with higher concreteness. Fig. [2](b) compares our model with baseline linguistic
model with hierarchical softmax, it demonstrates that with global visual context, our model captures
better semantic relationship than linguistic model.

4 Discussion

To conclude, in this paper, we propose to use global visual context to help train better word vector,
and to the best of our knowledge, it is the first attempt to train distributed word representation di-
rectly using images. The experiments show our approach is able to capture better visually grounded
semantics and outperforms pure linguistic model quantitatively and qualitatively.

Future works include 1) use both global visual information and global text information together
and a skip-gram like model, 2) explore how visual context can help both semantics and syntax of
words, and 3) explore the influence of image vector trained after this approach, and experiment with
image/text retrieval.
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